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a b s t r a c t 

This paper focuses on indirect adaptive fuzzy control of nonlinear descriptor systems described by both 

uncertain algebraic and differential equations aiming to guarantee asymptotic tracking of a regular and 

impulse-free descriptor reference model. The proposed controller exploits the universal approximation 

capability of Takagi–Sugeno–Kang (TSK) fuzzy models for the identification of the unknown system dy- 

namics. More specifically, it is assumed that only the system order is known while all the dynamical 

equations of the system are completely unknown. In the proposed method, the asymptotic tracking of 

the reference model is guaranteed by suitable adaptation laws for the parameters of the TSK fuzzy model. 

Simulation results are presented to demonstrate the effectiveness of the proposed method. 

© 2019 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Descriptor systems described by both differential and algebraic

equations have attracted considerable interest. For such systems

there are still challenging control/estimation problems that need

further investigation. Depending on the application domain, they

are also known as singular, implicit, generalized, degenerated or

differential-algebraic systems. 

Compared to standard state-space systems, descriptor systems

are able to describe more general real processes and can rep-

resent in a more accurate way the internal structure of certain

physical systems such as electrical and analog mechanical circuits,

aircraft dynamics, power systems and chemical processes. As a

matter of fact, the standard state-space form has some weaknesses.

One is that, in some practical models, both differential and alge-

braic equations may be used and the reduction to standard state-

space form can be complicated or make the model lose some nice

features. In particular, eliminating some variables for reduction to

state-space form can lead to less meaningful variables in physical

systems. Moreover, it has been shown in the literature that using

descriptor models is more convenient and has higher capability to

model large scale systems such as networks, power systems, etc.

[23] . Dealing with descriptor systems actually requires more so-

phisticated analysis and design tools than for classical state-space

systems. Further, for such systems, some well-known control ap-

proaches [7,18,19,31] , have not yet been generalized. 
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A lot of research work has been carried out for extend-

ng classical state-space control approaches to descriptor systems

2,6,32,42,43] . In particular, optimal control was one of the first to

e generalized to descriptor systems. Bender and Laub [5] devel-

ped an optimal linear-quadratic regulator (LQR) for continuous-

ime descriptor systems. Optimal control for linear descriptor sys-

ems and a quadratic cost functional has also been addressed

y Razzaghi and Shafiee [26] exploiting Legendre series. In a re-

ent study [33] , optimal control is considered for an uncertain

ontinuous-time descriptor system which can be described by un-

ertain differential equations; furthermore, uniqueness of the so-

ution and stability in measure of the descriptor system are anal-

sed. Robust control for descriptor systems has also been widely

tudied in the literature. Fang [12] proposed a state feedback con-

roller based on linear matrix inequalities (LMIs) for the prob-

em of delay-dependent robust H ∞ 

-control of uncertain descrip-

or systems with time-delay. An LMI method to design state-space

 ∞ 

-controllers for linear time-invariant singular systems is pro-

osed by Inoue et al. [16] . In [45] , the mixed H ∞ 

and passive

ontrol problem is studied for descriptor systems with time-delay

n order to make the considered system regular, impulse-free and

table. Further, other design schemes for descriptor systems have

een developed such as a nonlinear feedback control law based on

he problem of asymptotic output tracking for a class of nonlin-

ar descriptor systems [44] and a nonlinear model-following con-

rol for fuzzy descriptor systems [36] . In [14] , sliding mode control

f discrete-time descriptor systems with external disturbances and

ime-varying delays is discussed. 

Moreover, artificial intelligence techniques have received great

ttention in this area. For instance, a robust fuzzy controller has
www.manaraa.com
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een designed to stabilize a class of singular systems in the pres-

nce of time-varying delay [41] , and optimal control for a class

f descriptor systems has been proposed exploiting a neural net-

ork to solve the matrix Riccati differential equation [3] . Li et al.

resent a sufficient condition for D-stability of a delayed discrete-

ime singular system to guarantee the regularity of the closed-loop

ystem despite parameter uncertainties [24] . At the moment, only

 few results are available on the control of uncertain descriptor

ystems. In particular, some adaptive control methods have been

eveloped for descriptor systems. Azarfar et al. [27] have proposed

n adaptive state feedback control approach based on a Lyapunov

tability theorem. Another study concerns model-reference adap-

ive tracking of nonlinear descriptor systems with nonlinear pa-

ameterization. It converts this problem for a descriptor system

nto an equivalent problem for an ordinary state-space system [1] .

inally, an adaptive control scheme for a linear descriptor system

as been developed [35] to ensure that the system states asymp-

otically track the reference states. 

Recently, some interesting works have been devoted to control

f systems with singular perturbations. In fact, singularly perturbed

ystems (SPSs) have attracted great attention due to their many rel-

vant practical applications with physical systems displaying mul-

iple time-scale features. Employing a slow state-variable feedback

SSVF) stabilization controller for semi-Markov jump discrete-time

ystems with slow sampling singular perturbations in [29] , allowed

o establish less conservative applicability conditions compared to

xisting studies. Shen et al. [28] have designed a controller for

iscrete-time nonlinear SPSs based on the Takagi–Sugeno (T–S)

uzzy model approach and semi-Markov kernel concept, and have

nalysed the stability of the proposed method. Quantized control

or fuzzy semi-Markov jump singularly perturbed systems (S-MJSPSs)

ith packet dropouts is studied in [30] using T–S fuzzy modeling

o cope with the system nonlinearity. 

In nonlinear control theory, an important approach is to model

he nonlinear system as T–S fuzzy systems. Consequently, it has at-

racted increasing attention. Stability analysis of T-S fuzzy systems

s investigated using an equivalence relation and an extention of

olya’s Theorem in [9] . Output feedback control of discrete-time T-

 fuzzy systems is presented by Dong and Yong [8] . The proposed

pproach provides less conservative results since the premise vari-

bles of the fuzzy controller consist of both measurable premise

ariables and estimates of unmeasurable premise variables. A fault

solation scheme for T-S fuzzy systems with sensor faults is de-

igned in [10] by exploiting premise variables in order to lead to

mproved fault isolation performance. 

Another important approach is to approximate the unknown

onlinear dynamics of the system using fuzzy systems. Most of the

entioned methods about control of nonlinear descriptor systems

ssume that the plant dynamics are known. Nevertheless, in many

ractical systems the dynamics are not completely known. Since

uzzy systems are universal approximators [39] , they can satisfac-

orily work in situations characterized by large uncertainty or un-

nown system dynamics. There exist a set of tunable parameters of

he approximator fuzzy system that must be properly updated ac-

ording to the system response. To this end, a suitable adaptation

aw can be used to update the parameters of the fuzzy system.

daptive fuzzy control has recently attracted great interest in the

ontext of ordinary systems [13,21,22,25,38] and the results show

everal advantages in controlling nonlinear systems having uncer-

ainty or lacking information. Adaptive controllers can be classified

nto two categories, i.e. direct and indirect ones. In particular, direct

daptive fuzzy control (DAFC) uses a fuzzy system to generate the

ontrol action, and the parameters of the fuzzy system are directly

djusted to satisfy the required control objectives. Conversely, indi-

ect adaptive fuzzy control (IAFC) exploits fuzzy systems in order to

dentify the plant dynamics, and a suitable controller is developed
or the identified system. Both approaches have their own rela-

ive merits/drawbacks and can be applied to different problems.

he main advantage of DAFC is that its structure is simpler. On

he other hand, it is not important how many unknown functions

re used to model the system, DAFC needs only as many fuzzy sys-

ems as the number of inputs. Further, in DAFC no prior knowledge

bout model functions may be needed but some restrictions exist

n the design procedure. One advantage of IAFC is the separation

f model adaptation from controller design, This enables model or

arameter convergence to be analysed separately from control per-

ormance and stability. A further advantage is the ability to tune

he desired control performance without the need for changing the

uzzy model and its parameters, since the fuzzy rules refer to the

rocess and not to the controller. Clearly, changes in the controller

o not imply any change in the plant model. 

Since modelling of many physical systems naturally leads to

onsider both, possibly nonlinear, differential and algebraic equa-

ions and for such systems an ordinary state-space model is just a

implified model of the original one, adaptive fuzzy control should

e extended to nonlinear descriptor systems. However, such an ex-

ension is not straightforward at all since the presence of algebraic

quations brings complications in several issues of the control de-

ign/analysis such as model following conditions, stability analysis

nd so on. 

Hence, the main motivations and contributions of this paper are

he following. 

• To find conditions which guarantee that a nonlinear descriptor

system can track a desired linear descriptor reference model. 

• To identify on-line a TSK fuzzy model that approximates the

unknown nonlinear descriptor system. 

• To propose an auxiliary signal that compensates the approxi-

mation error of the fuzzy model. 

• To guarantee that the system state will asymptotically track the

reference model state by means of the proposed indirect adap-

tive fuzzy controller. 

As a consequence, this study investigates indirect adaptive fuzzy

ontrol for control-affine nonlinear descriptor systems. Fuzzy sys-

ems are employed to model the unknown nonlinear functions of

he descriptor system and an adaptive estimation technique is used

o on-line tune the fuzzy parameters. Furthermore, a compensating

ontrol is used to make amends for the estimation errors. Finally,

tability of the closed-loop system and convergence of the system

tate to the desired one are proved by means of Lyapunov theory. 

The rest of the paper is organized as follows. Section 2 pro-

ides the problem statement and some preliminaries. Then,

ection 3 presents the indirect adaptive fuzzy control strategy.

imulation results are provided in Section 4 . Section 5 concludes

he paper. 

. wPreliminaries and statement of the problem 

Consider the following descriptor control-affine system 

 ˙ x = f(x) + G(x) u (1) 

here: x ∈ R 

n is the state vector assumed to be accessible for

eedback; u ∈ R 

m is the control input; f : R 

n → R 

n and G : R 

n →
 

n ×m are unknown nonlinear function vector and matrix, respec-

ively; E ∈ R 

n ×n is the known descriptor matrix with rank (E) = r ≤
 . Let 

f(x) = [ f 1 (x) , . . . , f n (x) ] 
T 

(x) = 

⎡ ⎣ 

g 11 (x) . . . g 1 m 

(x) 
. . . 

. . . 
. . . 

g n 1 (x) . . . g nm 

(x) 

⎤ ⎦ (2) 
www.manaraa.com



32 N. Fakhr Shamloo, A. Akbarzadeh Kalat and L. Chisci / European Journal of Control 51 (2020) 30–38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S
 

[  

p(
 

U(
a(
s

 

i

3

 

G  

t  

W  

f  

p  

t

u  

w  

δ  

p  

m

E

a

w

l

 

L  

f  

s

3

 

fi

D  

s

w  

[  

o  

v  

m

 

a  

u  
where f i (x) and g ij (x) are unknown nonlinear functions. 

The control objective is to find an indirect adaptive fuzzy con-

troller such that the system state follow the state of the given ref-

erence model 

E ˙ x d = A d x d + B d r (3)

where: x d ∈ R 

n is the desired state vector; A d and B d are known

constant matrices; r is the reference model input. Notice that the

descriptor matrix E in the above reference model will be assumed

to be the same as in the original system (1) . 

Let us define the tracking error as 

e 
�= x − x d (4)

Then, the desired error dynamics is proposed to be 

E ˙ e = A d e (5)

Definition 1 [23] . Consider a general linear descriptor system de-

fined as 

E ̇ x = Ax (6)

• The matrix pair (E, A) is regular if det (s E − A) � = 0 for some s ∈
C . 

• The matrix pair (E, A) is impulse-free if deg ( det (s E − A)) =
rank (E) . 

• The matrix pair (E, A) is stable if all roots of det (s E − A) = 0 are

in the open left half plane. 

Definition 2. Let B(x, t) ∈ R 

n ×m be a full rank matrix. Then, its

pseudo-inverse B 

† (x, t) ∈ R 

m ×n is defined as 

B 

† (x, t) = 

⎧ ⎨ ⎩ 

B 

T (x, t) 
(
B(x, t) B 

T (x, t) 
)−1 

, n < m 

B 

−1 (x, t) , n = m (
B 

T (x, t)B(x, t) 
)−1 

B 

T (x, t) , n > m 

. 

Theorem 1 [17] . For the descriptor system (6) , the following state-

ments are equivalent: 

• The system (E, A) is regular, impulse-free and stable. 

• There exists a solution P ∈ R 

n ×n to the following system of inequal-

ities: {
E 

T P = P 

T E ≥ 0 

P 

T A + A 

T P = −Q < 0 . 
(7)

Theorem 2. A nonlinear descriptor system (1) can track the linear

descriptor reference model (3) , if the following conditions are satis-

fied 

R (G(x)) ⊃ R (B d ) ∀ x 

R (G(x)) ⊃ Im ( h ) ∀ x (8)

where: h ( x ) 
�= f(x) − A d x ; Im (h) denotes the image of function h ;

R ( M ) stands for the range space of matrix M . 

Proof. Combining (1), (3) and (4) leads to 

E ̇ e = A d e + f(x) + G(x) u − B d r − A d x (9)

By defining 

u = G 

† (x) ( −f(x) + B d r + A d x ) (10)

then (9) becomes 

E ̇ e = A d e + 

(
G(x)G 

† (x) − I 
)
( −f(x) + B d r + A d x ) (11)

In order to satisfy the tracking condition, it is necessary to make

(11) equal to (5) . Hence, the following equality must hold (
G(x)G 

† (x) − I 
)
( −f(x) + B d r + A d x ) = 0 (12)
ince G(x) G 

† (x) is an orthogonal projection operator on R ( G(x) )
11] , it can be concluded that G(x) G 

† (x) − I is also an orthogonal

rojection. Then, 

G(x) G 

† (x) − I 
)
G(x) = 0 . (13)

sing (8) and (13) , we have 

G(x) G 

† (x) − I 
)
B d r = 0 

nd 

G(x) G 

† (x) − I 
)
( f(x) − A d (x) ) = 0 

o that, if (8) are satisfied, (12) holds. �

Hereafter, it will be assumed that the reference model (3) sat-

sfies the conditions stated in Theorems 1 and 2 . 

. Main results 

Consider the control-affine descriptor system (1) . If f(x) and

(x) are known, under conditions (8), (5) can be deduced and,

herefore, the tracking error converges to zero asymptotically.

henever f(x) and G(x) are unknown, exploiting the fact that

uzzy models are universal approximators [40] , they can be ap-

roximated by fuzzy models ˆ f (x) and 

ˆ G (x) . Thus, the fuzzy coun-

erpart of control law (41) turns out to be 

 = 

ˆ G 

† (x)( −ˆ f (x) + B d r + A d x + u s ) (14)

here: ˆ G 

† = ( ̂  G 

T ˆ G + δI ) −1 ˆ G 

T is a regularized pseudo-inverse of ˆ G ,

is a small positive constant; u s ∈ R 

n is an auxiliary signal to be

roperly designed to compensate the unavoidable fuzzy approxi-

ation errors. 

Substituting (14) into (9) yields 

 ̇ e = A d e + (f(x) − ˆ f (x)) + (G(x) − ˆ G (x))u 

+ u s + ( ̂  G (x) ̂  G 

† (x) − I)( −ˆ f (x) + B d r + A d x + u s ) 

nd defining 

 1 = ( ̂  G (x) ̂  G 

† (x) − I )( −ˆ f (x) + B d r + A d x + u s ) 

eads to 

E ̇ e = A d e + (f(x) − ˆ f (x)) + (G(x) − ˆ G (x)) u + u s + w 1 (15)

et us now recall that for a generic scalar function f(x) , x ∈ R 

n , its

uzzy approximation ̂

 f (x) is obtained as the output of a fuzzy logic

ystem based on the following subsection. 

.1. Takagi–Sugeno–Kang fuzzy structure 

The type-1 TSK Multi-input Single-Output (MISO) model is de-

ned as follows. 

efinition 3. The TSK fuzzy system has the following IF-THEN rule

tructure [34] 

IF 
(
x 1 is F l 1 

)
and · · · and 

(
x n is F l n 

)
THEN 

y l = c l 0 + c l 1 x 1 + · · · + c l n x n 

here: l = 1 , . . . , L, L being the number of fuzzy rules; x =
 x 1 , . . . , x n ] 

T ∈ R 

n is the input of the fuzzy system; y l is the

utput of the local model in the rule consequent and c l 
i 

are real-

alued parameters; F l 
i 

are fuzzy sets in R associated with the fuzzy

embership functions μ
F l 
i 
(·) . 

In the zero-order TSK system it is assumed that c l 
i 
= 0 for i � = 0

nd the unique remaining parameter is set to c l 
0 

= ȳ l . Then, by

sing the singleton fuzzifier, the product inference engine, and a
www.manaraa.com
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eighted-average [39] , the final output of the fuzzy logic system

an be expressed as 

 

 (x) = 

∑ L 
l=1 ȳ 

l 

(∏ n 
i =1 μF l 

i 
( x i ) 

)
∑ L 

l=1 

(∏ n 
i =1 μF l 

i 
( x i ) 

)
r, equivalently, as 

 

 (x) = ξ (x)θ (16) 

here θ = 

[
ȳ 1 , . . . , ̄y L 

]T 
is the parameter vector and ξ (x) =

ξ 1 (x) , . . . , ξ L (x) 
]

the vector of the fuzzy basis functions 

l (x) = 

∏ n 
i =1 μF l 

i 
( x i ) ∑ L 

l=1 

(∏ n 
i =1 μF l 

i 
( x i ) 

)
heorem 3 [39] . Let f ( x ) be a continuous function defined on a com-

act set �. Then, for any given ε > 0 there exists a fuzzy logic system

16) such that 

up 
x ∈ �

| f (x ) − ξ (x ) θ | ≤ ε. 

.2. Fuzzy system design 

According to the previous subsection, the fuzzy approximations

f (2) take the form 

ˆ f i (x | θf i 
) = ξ f i 

(x) θf i 
i = 1 , . . . , n 

ˆ 
 i j (x | θg ij ) = ξg i j 

(x) θg ij i = 1 , . . . , n j = 1 , . . . , m 

here: θ f i 
∈ R 

L f i and θg i j 
∈ R 

L g i j are the parameter vectors for each

ystem function f i ( · ) or g ij ( · ); ξ f i 
(·) and ξg i j 

(·) are fuzzy basis

unction vectors defined as 

ξ f i 
(x) = 

[ 
ξ 1 

f i 
(x) , . . . , ξ

L f i 
f i 

(x) 
] 

g i j 
(x) = 

[ 
ξ 1 

g i j 
(x) , . . . , ξ

L g i j 

g i j 
(x) 
] 

et us introduce 

f (x) = diag 
(
ξ f 1 (x) , . . . , ξ f n (x) 

)
ξg (x) = diag ( ξg 1 (x) , . . . , ξg n (x) ) 

here 

g i (x) = [ ξg i 1 (x) , . . . , ξg im (x) ] 

nd 

θf = 

[
θ T 

f 1 
, . . . , θ T 

f n 

]T 

g = 

[
θ T 

g 1 
, . . . , θ T 

g n 

]T 

here 

g k = diag 
(
θg k 1 , . . . , θg km 

)
. 

ence, the fuzzy-approximated system functions can be compactly

xpressed as 

ˆ f (x) = ̂

 f 
(
x | θ f 

)
= ξ f (x) θ f 

ˆ 
 (x) = 

ˆ G ( x | θg ) = ξg (x) θg (17) 

et the optimal parameters θ ∗
f i 

and θ ∗
g i j 

of the closest possible ap-

roximations be defined as 
θ ∗
f i 

= arg min 

θ f i 
∈ � f i 

{ 
sup 

∣∣∣ ˆ f i 
(
x | θ f i 

)
− f i (x) 

∣∣∣} 
∗
g i j 

= arg min 

θg i j 
∈ �g i j 

{
sup 

∣∣ ˆ g i j 

(
x | θg i j 

)
− g i j ( x ) 

∣∣}
here � f i 

and �g i j 
are the compact sets of allowable controller

arameters. Hence, the best approximations of f(x) and G(x) are 

ˆ f (x | θ ∗
f ) = 

[
ˆ f 1 (x | θ ∗

f 1 
) , . . . , ˆ f n (x | θ ∗

f n 
) 
]T 

ˆ 
 (x | θ ∗

g ) = 

⎡ ⎣ 

ˆ g 11 (x | θ ∗
g 11 

) . . . ˆ g 1 m 

(x | θ ∗
g 11 

) 
. . . 

. . . 
. . . 

ˆ g n 1 (x | θ ∗
g n 1 

) . . . ˆ g nm 

(x | θ ∗
g nm 

) 

⎤ ⎦ 

espectively, and 

 2 = [ ̂ f (x | θ ∗
f ) − f(x)] + [ ̂  G (x | θ ∗

g ) − G(x) ]u (18) 

s defined as the minimum approximation error. In some adap-

ive fuzzy control schemes, it is assumed that the approximation

rror is small and can be neglected [4,15] or is square integrable

20,37] to make the stability analysis valid. In this study, the aux-

liary signal u s is used to compensate this error. 

.3. Adaptive fuzzy control design 

In order to meet the control objectives under the unknown sys-

em uncertainties, a Lyapunov-based adaptive fuzzy controller is

roposed in this subsection. 

Using (18), (15) can be rewritten as 

 ̇ e = A d e + [ ̂ f (x | θ ∗
f ) − ˆ f (x | θf )] + [ ̂  G (x | θ ∗

g ) − ˆ G (x | θg )] u + u s + w 

(19) 

here w = w 1 + w 2 . Substituting (17) into (19) and after some ma-

ipulations, the tracking error dynamics of the closed-loop system

s given by 

 ̇ e = A d e + ξf (θ
∗
f − θf ) + ξg (θ

∗
g − θg )u + u s + w (20)

heorem 4. For the system (1) , the control law (14) and auxiliary

ompensating signal 

 s = −k sgn ( e p ) (21) 

ill ensure that the system state is bounded and the tracking er-

or asymptotically tends to zero if the following parameter adaptation

aws are adopted 
. 

f 

= γ f ξ
T 
f e p (22) 

. 

g 
= 	g ξ

T 
g e p u 

T (23) 

˙ 
 = γk 

n ∑ 

i =1 

| e p i | (24) 

here: 

 p = Pe ; (25) 

gn 

(
e p 
)

= 

[
sgn 

(
e p 1 

)
, . . . , sgn 

(
e p n 
) ]T 

; e p i is the ith compo- 

ent of e p ; matrix P satisfies 

E 

T P = P 

T E ≥ 0 

P 

T A d + A 

T 
d 

P = −Q 

(26) 

or some positive definite matrix Q. 

roof. Let 

˜ 
 

�= k m 

− k, ˜ θ f 
�= θ ∗

f − θ f , 
˜ θg 

�= θ ∗
g − θg (27) 
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where: ‖ w ‖ ≤ k m 

; k m 

is an unknown positive constant; k is an es-

timate of k m 

. It should be mentioned that k m 

is an artificial quan-

tity only required for analytical purposes. 

Let us define the following Lyapunov function candidate 

 = 

1 

2 

e T E 

T Pe + 

1 

2 γ f 

˜ θ T 
f 

˜ θ f + 

1 

2 

tr 
(

˜ θ T 
g 	

−1 
g 

˜ θg 

)
+ 

1 

2 γk 

˜ k 2 (28)

where: γ f , γ k are positive constants; 	g is a diagonal matrix with

positive elements. In the proposed Lyapunov function, the first

term is chosen to guarantee that the system state will asymptoti-

cally track the reference model state. Moreover, it ensures stability

of the closed-loop system according to Theorem 1. Conversely, the

second and third terms are used to obtain the adaptive laws for

online tuning of the fuzzy model parameters that approximate the

unknown nonlinear functions. Finally, the update law for the coef-

ficients of the compensating controller u s is derived from the last

term of the candidate Lyapunov function 

Using (27), (20) will become 

E ̇ e = A d e + ξ f 
˜ θ f + ξg ̃

 θg u + u s + w 

Differentiating V with respect to t yields 

˙ 
 = 

1 

2 

e T 
(
P 

T A d + A 

T 
d P 

)
e + e T P 

T w + e T P 

T ξ f 
˜ θ f + e T P 

T ξg ̃
 θg u 

+ e T P 

T u s + 

1 

γ f 

˙ ˜ θ T 
f 

˜ θf + tr 

(
˙ ˜ θ T 
g 	

−1 
g 

˜ θg 

)
+ 

1 

γk 

˙ ˜ k ̃ k (29)

The fact that the trace is invariant under cyclic permutations i.e.

tr ( A , B , C , D ) = tr(D, A, B, C) where A , B , C and D are matrices of

appropriate dimensions, leads to 

e T P 

T ξg ̃
 θg u = tr( e T P 

T ξg ̃
 θg u) = tr(u e T P 

T ξg ̃
 θg ) (30)

Consequently, by using (27) and (30), (29) can be rewritten as 

˙ 
 = 

1 

2 

e T 
(
P 

T A d + A 

T 
d P 

)
e − 1 

γ f 

˙ θ T 
f 

˜ θ f + e T P 

T ξ f 
˜ θ f 

− tr( ˙ θ T 
g 	

−1 
g 

˜ θg ) + tr(u e T P 

T ξg ̃
 θg ) + e T P 

T u s + e T P 

T w + 

1 

γk 

˙ ˜ k ̃ k 

(31)

Substituting (22), (23) and (26) into (31) , ˙ V can be bounded as 

˙ 
 ≤ −1 

2 

e T Qe − 1 

γ f 

( γ f e 
T 
p ξ f ) ̃  θ f + e T P 

T ξ f 
˜ θ f 

+ t r 
(
(u e T p ξg 	g )	

−1 
g 

˜ θg 

)
+ t r(u e T P 

T ξg ̃
 θg ) 

+ e T P 

T u s + e T P 

T w + 

1 

γk 

˙ ˜ k ̃ k (32)

and results 

˙ 
 ≤ −1 

2 

e T Qe + e T P 

T w + e T P 

T u s + 

1 

γk 

˙ ˜ k ̃ k (33)

Considering the definition (25) and 

e T P 

T w = e T p w ≤
n ∑ 

i =1 

| w i | | e p i | ≤ k m 

n ∑ 

i =1 

| e p i | 

the following inequality will be obtained 

˙ 
 ≤ −1 

2 

e T Qe + k m 

n ∑ 

i =1 

| e p i | − k 

n ∑ 

i =1 

| e p i | + 

1 

γk 

˙ ˜ k ̃ k 

Substitution of the adaptation law (24) and (27) give 

˙ 
 ≤ −1 

2 

e T Qe ≤ −1 

2 

λmin ( Q ) ‖ 

e ‖ 

2 (34)

Integrating (34) over [0, ∞ ), yields ∫ ∞ 

0 
‖ 

e ‖ 

2 dt ≤ V (0) − V (∞ ) 
1 λmin ( Q ) 

(35)

2 t  
he Lyapunov function candidate (28) is nonincreasing and lower

ounded ( V ≥ 0). According to the inequality (35) , ‖ e ‖ exists and

s finite (e( t ) ∈ L 2 ). Moreover, from (28) it can be deduced that

( t ) ∈ L ∞ 

and θ f , θ g , k are bounded. Further, from (20) it turns out

hat ˙ e (t) ∈ L ∞ 

, so that e( t ) is uniformly continuous. Based on Bar-

alat’s lemma it holds that lim 

t→∞ 

e(t) = 0 . �

emark 1. The compensating signal (21) causes a phenomenon so-

alled chattering , consisting of unwanted oscillations in the control

nd other system signals. Thus, usually a smooth function such as

aturation or hyperbolic tangent is used instead of the sign func-

ion. In the simulations of next section, we have specifically used

he saturation, instead of the sign function, to implement the com-

ensating controller (21) . 

The overall structure of indirect adaptive fuzzy tracking control

s schematized in Fig. 1 . 

. Simulations 

In this section, the proposed adaptive fuzzy controller is applied

o tracking control of two nonlinear singular systems in order to

nvestigate the effectiveness of this approach. 

xample 1. Consider the following nonlinear singular system 

˙ 
 1 = −3 x 1 − 2 x 2 

0 = x 2 + e x 2 + e x 1 u (36)

here x = [ x 1 , x 2 ] 
T is the state vector and u the scalar control in-

ut which should be designed based on the scheme presented in

his paper. The reference state is generated from (3) where 

 = 

[
1 0 

0 0 

]
, A d = 

[
−3 −2 

−1 2 

]
, B d = 

[
0 

4 

]
(37)

nd the input of the reference system is a pulse wave signal de-

ned as 

r(t) = 

{
1 , t ≤ 10 

0 , 10 < t ≤ 20 

r(t + 20) = r(t) 

t can be checked that (36) and (37) satisfy the conditions in

8) . Hence, the method discussed in this paper can be applied to

his example. It is assumed that the initial state is set to x(0) =
 

0 . 5 , −0 . 56 ] 
T and the initial conditions of the fuzzy parameters are

et to zero for all elements of θf and to one for all elements of

g . Further, the learning parameters are chosen as γ f = 5 , 	g = 0 . 5

nd γk = 10 . The matrix P satisfying (26) has been chosen as 

 = 

[
0 . 156 0 

0 . 031 −0 . 25 

]
To approximate the unknown nonlinear functions, five fuzzy

embership functions in the interval [-1, 1] are considered for nor-

alized x i ( i = 1 , 2 ) 

1 ( x i ) = exp 

(
−1 

2 

( x i − 1) 
2 
)

2 ( x i ) = exp 

(
−1 

2 

( x i − 0 . 5) 
2 
)

3 ( x i ) = exp 

(
−1 

2 

( x i ) 
2 
)

4 ( x i ) = exp 

(
−1 

2 

( x i + 0 . 5) 
2 
)

5 ( x i ) = exp 

(
−1 

2 

( x i + 1) 
2 
)

igs. 2 –4 display the simulation results using the controller (14) for

he system (36) . It can be seen, from Figs. 2 and 3 , that a good
www.manaraa.com



N. Fakhr Shamloo, A. Akbarzadeh Kalat and L. Chisci / European Journal of Control 51 (2020) 30–38 35 

Fig. 1. Indirect adaptive fuzzy tracking control. 

Fig. 2. Trajectory of the state variable x 1 and reference state variable x 1d 

Fig. 3. Trajectory of the state variable x 2 and reference state variable x 2d . 

Fig. 4. Control input signal u . 
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a

racking performance can be obtained under the action of the pro-

osed controller. Fig. 4 shows the control input signal. 

xample 2. Let us now consider the following control-affine de-

criptor system 

˙ 
 1 = 2 x 2 1 − 3 x 1 − 3 x 3 + e (x 1 + x 3 ) u 1 

˙ 
 2 = x 1 x 2 − 2 x 2 + ( x 1 + 1) u 2 

0 = x 3 + cos x 3 + x 2 + ( sin x 1 + 0 . 5 cos x 3 ) u 3 (38) 

here x = [ x 1 , x 2 , x 3 ] 
T denotes the state and u = [ u 1 , u 2 , u 3 ] 

T the

ontrol input. 

Let us also consider the reference descriptor model (3) with

atrices 

 = 

[ 

1 0 0 

0 1 0 

0 0 0 

] 

, A d = 

[ −3 0 −2 

2 −1 0 

−0 . 5 0 1 

] 

, B d = 

[ 

0 

0 

2 

] 

(39)

nd sinusoidal reference input 

(t) = 0 . 5 sin (0 . 1 πt) 

he fuzzy membership functions are defined, for any state variable

 i , as follows 

1 ( x i ) = exp 

(
−1 

2 

(
x i − 1 . 25 

0 . 6 

)2 
)

2 ( x i ) = exp 

(
−1 

2 

(
x i 

0 . 6 

)2 
)

3 ( x i ) = exp 

(
−1 

2 

(
x i + 1 . 25 

0 . 6 

)2 
)

hen, there are 27 rules to approximate the system functions f(x)

nd G(x). 

The initial state has been set to x(0) = [ 0 . 5 , 0 . 5 , −1 . 5 ] 
T and the

nitial values of the fuzzy parameters θf and θ g have been set to

ne. The matrix P satisfying (26) has been chosen as 

 = 

[ 

0 . 256 0 . 2 0 

0 . 2 0 . 5 0 

0 . 262 0 . 4 −0 . 5 

] 

The adaptation gains used in this simulation are γ f = 10 0 0 ,

g = 50 I 3 and γk = 100 . It must be noted that Theorem 2 holds for

ny system in the form (1) with full rank square matrix G. 
www.manaraa.com
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Fig. 5. Trajectory of the state variable x 1 and reference state variable x 1d . 

Fig. 6. Trajectory of the state variable x 2 and reference state variable x 2d . 

Fig. 7. Trajectory of the state variable x 3 and reference state variable x 3d . 

Fig. 8. Control input signals u . 

 

 

 

 

 

Fig. 9. An inverted pendulum system. 
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The simulation results are shown in Figs. 5–8 where Figs. 5–7

show the tracking performance for x 1 , x 2 , x 3 , respectively. It is clear

that states rapidly converge to the desired reference trajectories.

The control input signals are shown in Fig. 8 . 

The simulation results demonstrate the tracking capability of

the proposed controller and its effectiveness for control of uncer-

tain control-affine descriptor systems. 
xample 3. In this example, we consider an inverted pendulum

ystem consisting of a mass m connected, by means of a massless

od of length L , to a cart of mass M (see Fig. 9 ). The motion equa-

ion of such a system is given by Wang [39] 

θ̈ −
[

g sin θ − mL ˙ θ2 cos θ sin θ

M + m 

]/[
L 

(
4 

3 

− m cos 2 θ

M + m 

)]
− cos θ

M + m 

/[
l 

(
4 

3 

− m cos 2 θ

M + m 

)]
u = 0 

Given the parameter values M = 1[ kg] , m = 0 . 1[ kg] , L = 0 . 5[ m ] ,

 = 9 . 8[ m/s 2 ] and defining the state vector x = [ x 1 , x 2 , x 3 ] 
T =

θ, ˙ θ, θ̈
]T 

, the resulting nonlinear descriptor system turns out to

e: 

˙ 
 1 = x 2 

˙ 
 2 = x 3 

0 = 0 . 66 x 3 − 0 . 045 x 3 cos 2 x 1 − 9 . 8 sin x 1 

+ 0 . 045 x 2 2 sin x 1 cos x 1 + 0 . 9 cos x 1 u (40)

emark 2. One advantage of descriptor models is that they some-

imes can keep the natural structure of the dynamical model.

hough it is easy to model a single inverted pendulum by dif-

erential equations, modeling an n -pendulum, i.e. the cascade of n

endulums one attached to each other, is highly difficult since all

angential forces need to be computed. Even if it is clearly possi-

le to model the inverted pendulum of Fig. 9 as an ordinary state-

pace system, it is worth to highlight that modelling real systems

n descriptor form gives the designer more options to achieve bet-

er performance. For this specific example, the mass acceleration

an also be controlled with respect to the algebraic equation. In

ther words, in the ordinary state space model of the inverted

endulum system, pendulum acceleration is not an independent

ariable which can have an independent reference. But in the de-

criptor model, it can be controlled separately with its own refer-

nce and desired behavior. Furthermore, describing real systems by

rdinary state-space models is sometimes very complicated if not

mpossible. 

Consider the reference descriptor model (3) with matrices 

 = 

[ 

1 0 0 

0 1 0 

0 0 0 

] 

, A d = 

[ 

0 1 0 

0 0 1 

3 2 1 

] 

, B d = 

[ 

0 

0 

1 

] 

(41)
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Fig. 10. Trajectory of the state variable x 1 and reference state variable x 1d . 

Fig. 11. Trajectory of the state variable x 2 and reference state variable x 2d . 
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Fig. 12. Trajectory of the state variable x 3 and reference state variable x 3d . 

Fig. 13. Control input signal u . 
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nd the reference input 

(t) = sin (0 . 5 πt) . 

ive fuzzy sets, for each normalized state variable x i , are character-

zed by the following membership functions 

1 ( x i ) = 1 ( 1 + exp ( 10 ( x i − 0 . 4 ) ) ) 

2 ( x i ) = exp 

(
−1 

2 

(
x i − 0 . 2 

0 . 5 

)2 
)

3 ( x i ) = exp 

(
−1 

2 

(
x i 

0 . 5 

)2 
)

4 ( x i ) = exp 

(
−1 

2 

(
x i + 0 . 2 

0 . 5 

)2 
)

5 ( x i ) = 1 / ( 1 + exp ( 10 ( x i + 0 . 4 ) ) ) 

n the simulations, the design parameters are taken as γ f =
g = 300 and γk = 10 . The initial state has been set to x(0) =
 

0 , 1 . 5 , 25 ] 
T and the initial values of the fuzzy parameters θf and

g have been set to 50. Solving (26) yields the following solution

or matrix P: 

 = 

[ 

1 . 63 0 . 36 −0 . 16 

0 . 36 0 . 73 −0 . 43 

−0 . 16 −0 . 43 −0 . 06 

] 

 

Figs. 10 –12 show that tracking performance is satisfactory and

hat the tracking error asymptotically vanishes. The control input

ignal is shown in Fig. 13 . These results indicate that the devel-

ped controller can effectively solve the tracking control problem

f descriptor systems with unknown parameters. 

. Conclusions 

This paper has developed an indirect adaptive fuzzy control

trategy for control-affine descriptor systems. The adaptation laws

or the unknown descriptor system are provided via fuzzy logic ap-

roximation of unknown parameters to make the state track the
esired response of a reference model when only the system or-

er and the number of algebraic equations are known. Compared

o existing adaptive control strategies developed for descriptor sys-

ems, the method proposed in this paper needs less information

bout the system under control and could be a convenient choice

hen modeling is a hard task or in the case that the system pa-

ameters are varying as unknown functions of time. In this paper,

t is assumed that all states are available for measurement. Hence,

t is worth to extend our study when there exist unmeasurable

tates. Moreover, possible future developments will concern direct

daptive fuzzy control strategies for nonlinear descriptor systems. 
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